Medix Biochemica

The Interplay Between Climate Change and AMR

Climate Change:¹

- Long-term shifts in temperatures and weather patterns
- Largely due to human activities (e.g. burning of fossil fuels)
- Causes extreme weather events and decreases biodiversity

Antimicrobial Resistance (AMR):

- Microbes (bacteria, viruses, fungi and/or parasites) stop responding to antimicrobial medicines²
- Largely due to overuse and misuse of antimicrobial medicines³
- Infectious diseases become more difficult or even impossible to treat²

250 000

Climate change is forecast to cause 250 000 deaths per year between 2030 and 2050⁴

10 million

AMR is forecast to cause 10 million deaths per year by 2050⁵

The average temperature of Earth's surface is now about 1.2 °C warmer than it was before the Industrial Revolution¹

Climate change and AMR are 2 of the biggest global health challenges facing our world today. We're discovering that these problems are closely linked, although experts are still determining exactly how^{5,6}

How Does Climate Change Create Favorable Conditions for Disease to Spread?

Rising temperatures = faster bacterial growth + expanded territories for climate-sensitive diseases 5,6

Examples ⁵		
Microorganisms	Impact of climate change	Outcome (disease)
Campylobacter spp. and Salmonella spp.	Rising temperatures in the water system = more favorable conditions for microorganism survival	Water- and food-borne diseases
Vibrio cholerae	Rising temperatures = natural disasters = more favorable conditions for microorganism survival	Cholera
Candida auris	Increasing tolerance to heat and salinity in the wetland ecosystem	Candidiasis
Plasmodium falciparum	Rising temperatures and humidity = easier transmission	Malaria

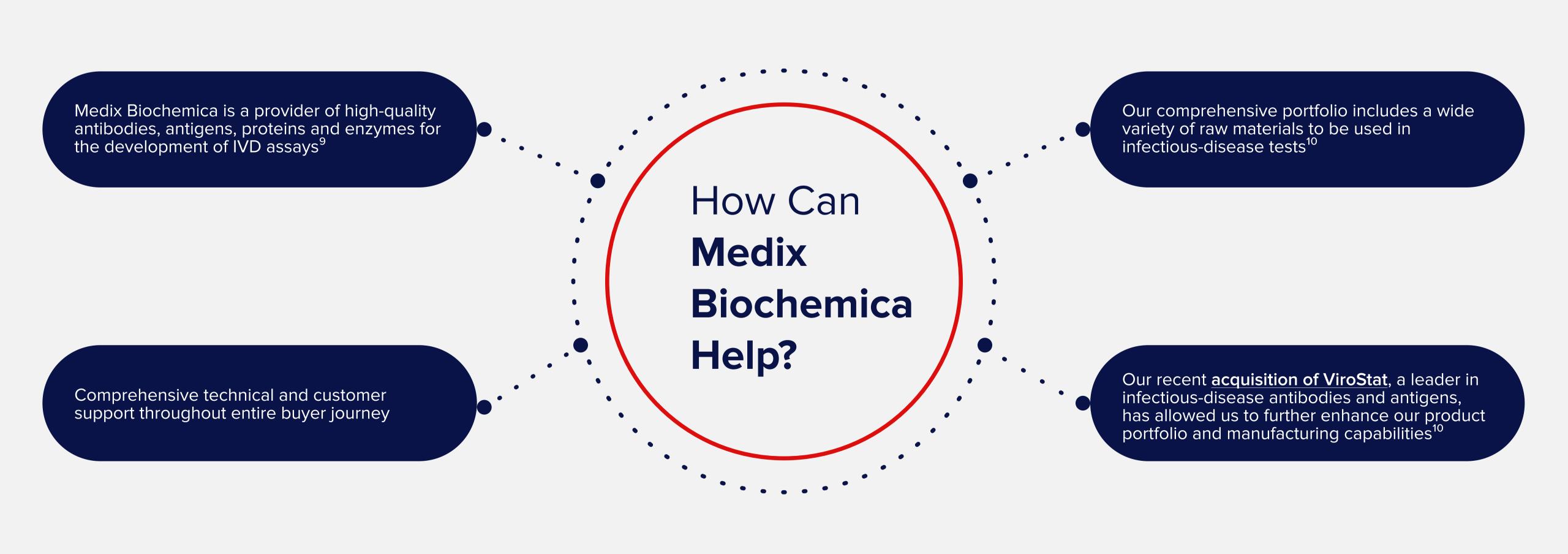
How Do Extreme Weather Events (Natural Disasters) Spread Disease and Exacerbate AMR?⁶

Population displacement

Overcrowding, lack of sanitation Disrupted access to health services

Damage to sewage infrastructure

What Is the Role of IVD in Combating AMR?³


Misdiagnosis = unnecessary antibiotic use = increased risk of AMR

In vitro diagnostic (IVD) testing improves diagnostic distinction and helps to reduce the overuse of antibiotics

What Is the Value of IVD in Natural Disaster Settings?

Point-of-care (PoC) IVD testing:

1. What is climate change? United Nations. Accessed June 26, 2024. https://www.un.org/en/climatechange/what-is-climate-change.

- References
- 2. Antimicrobial resistance. World Health Organization. Accessed June 4, 2024. https://www.who.int/news-room/fact-sheets/detail/ antimicrobial-resistance. 3. Expert opinion. Interview with Gerben Zuiderveld, Sr. Global Product Manager, Medix Biochemica. March 2023.
- 4. Tang KWK, Millar BC, Moore JE. Antimicrobial resistance (AMR). Br J Biomed Sci. 2023;80:11387. doi:10.3389/bjbs.2023.11387. 5. Antimicrobial resistance and the climate crisis. Global Leaders Group on Antimicrobial Resistance. Accessed June 4, 2024.
- https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-gcp-tjs/amr-and-the-climate-crisis.pdf?
- sfvrsn=6d7c7a5b 7. 6. Magnano San Lio R, Favara G, Maugeri A, et al. How antimicrobial resistance is linked to climate change: An overview of two intertwined global challenges. Int J Environ Res Public Health. 2023;20(3):1681. doi:10.3390/ijerph20031681.
- 7. Tran NK, Godwin Z, Bockhold J. Point-of-care testing at the disaster-emergency-critical care interface. Point Care. 2012;11(4):180.
- doi:10.1097/POC.0b013e318265f7d9. 8. Chen H, Liu K, Li Z, et al. Point of care testing for infectious diseases. Clin Chim Acta. 2019;493:138-147. doi:10.1016/
- j.cca.2019.03.008. 9. Enabling better infection differentiation: Using inflammation marker panels to determine bacterial vs viral origin. Medix
- Biochemica. Accessed June 4, 2024. https://24933742.fs1.hubspotusercontent-eu1.net/hubfs/24933742/Webinars/ Sept%202023_Sepsis/Slide%20deck%20-%20Sept%202023%20Sepsis%20webinar.pdf.
- 10. Medix Biochemica acquires ViroStat. Medix Biochemica. Accessed June 5, 2024. https://articles.medixbiochemica.com/medixbiochemica-acquires-virostat.