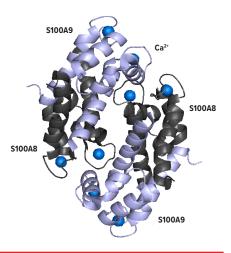
Calprotectin Antibodies With Different Binding Specificities Can Be Used as Tools to Detect Multiple Calprotectin Forms

Laura-Leena Kiiskinen¹, Sari Tiitinen¹ ¹Medix Biochemica, Klovinpellontie 3, FI-02180 Espoo, Finland

Calprotectin — A Pro-Inflammatory Protein


Calprotectin (leucocyte L1-protein) is a proinflammatory protein primarily secreted by neutrophils, macrophages and monocytes at the site of inflammation¹⁻⁴. Neutrophils accumulate in mucosa, where calprotectin is released and easily detectable⁴.

Calprotectin is comprised of two calcium-binding monomers, a 93-amino-acid S100A8 (MRP-8) and a 114-amino-acid S100A9 (MRP-14). Dimers pair non-covalently with each other, forming heterotetramers. S100A8 and S100A9 both contain two EF-hand type Ca²⁺ binding sites (Figure 1). Elevated serum or fecal calprotectin levels are indicative of several inflammatory diseases, including rheumatoid arthritis⁵, multiple sclerosis⁶, cystic fibrosis⁶ and inflammatory bowel diseases (IBD)⁷. Fecal calprotectin is an important factor in the follow-up of IBD development and monitoring of treatment response⁸.

Figure 1. The structure of human calprotectin heterotetramer. S100A8 monomer in dark grey, S100A9 monomer in violet and eight Ca2+ ions shown in blue. The model was generated using PyMol software from a publicly available calprotectin crystal structure (PDB ID: 1XK4).

Medix Biochemica

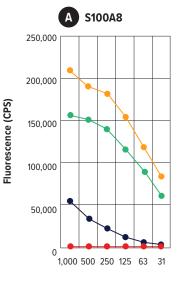
70th AACC Annual Scientific Meeting & Clinical Lab Expo July 29 – August 2, 2018, Chicago, Illinois, USA

Materials & Methods

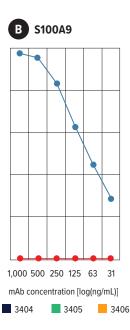
We have developed five mouse monoclonal antibodies (mAbs) against human calprotectin: 3403 (#100460), 3404 (#100468), 3405 (#100469), 3406 (#100470) and 3407 (#100618). Binding specificities of the antibodies were studied in fluorescent immunoassays (FIA) using purified recombinant monomeric calprotectin subunits S100A8 (#710018; Medix Biochemica) and S100A9 (#710019; Medix Biochemica), and the S100A8/A9 complex (#610061; Medix Biochemica) as antigens.

Antigens were coated onto a microtiter plate (#473709; NUNC[®]) at 50 ng/well, blocked for 1h at room temperature, and antibodies added at concentrations 31–1,000 ng/mL. Bound antibodies were detected using an europium (Eu)-labeled DELFIA[®] Eu-N1 Rabbit Anti-Mouse IgG antibody (#AD0207; PerkinElmer) as described previously⁹.

The specificities of calprotectin antibody pairs were studied in sandwich FIA. Capture antibodies (150 ng/well) were incubated with the S100A8/A9 complex at concentrations 0.15–1,000 ng/mL. Biotin-conjugated [#704-0030, Lightning-Link* Biotin Conjugation Kit (Type A); Innova Biosciences] antibodies and Eu-labeled streptavidin were used to detect the bound antigens. A widely studied calprotectin antibody 27E10 (#T-1023; BMA Biomedicals), that recognizes the S100A8/A9 dimer but not individual monomers¹⁰, was included as a reference antibody. Data were recorded on EnVision* Xcite Multilabel Plate Reader (PerkinElmer).


Binding Specificities of Calprotectin Antibodies

Direct FIA results with purified recombinant S100A8, S100A9, and S100A8/A9 complex proteins indicated that the antibodies were clustered in three groups:


- 1. Antibodies 3404, 3405 & 3406 that specifically recognized the subunit S100A8 (Figure 2A)
- Antibody 3403 that specifically bound to subunit S100A9 (Figure 2B)
- 3. Antibody 3407 that did not bind to either of the isolated calprotectin monomers but specifically recognized the S100A8/S100A9 complex (Figure 2C)

All antibodies recognized the S100A8/A9 complex (Figure 2C).

Figure 2. Binding of antibodies to calprotectin subunits. Detection of calprotectin subunits S100A8 (A) or S100A9 (B), and S100A8/A9 heterocomplex (C) by calprotectin mAbs 3403, 3404, 3405, 3406 and 3407.

3403

1,000 500 250 125 63 31

3407

Calprotectin Antibody Pairing

Sandwich FIA results varied significantly between different antibody pairs. Antibody 3407 vielded similar results as the reference antibody 27E10 when used as a pair with itself (Figure 3A).

Significantly higher signal-to-noise ratios were obtained across the concentration range tested when 3407 was combined with an antibody recognizing a specific subunit, such as antibody 3406 or 3404 (Figure 3B).

Antibodies 3407 and 3403 did not function as a pair, indicating that their epitopes may be partially overlapping, despite the differences in calprotectin subunit recognition.

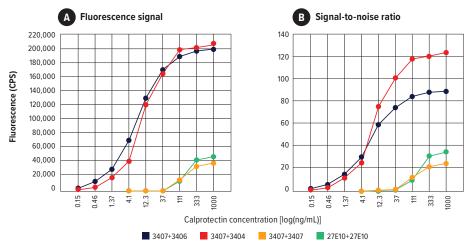
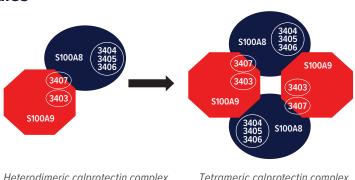



Figure 3. Calprotectin antibody pairing. Fluorescence signals (A) and signal-to-noise ratios (B) of sandwich FIA assays using calprotectin mAbs 3404, 3406, 3407, and 27E10. Capture antibody is listed first in each pair.

The Binding Profile of Calprotectin Antibodies

The present study demonstrated that each calprotectin antibody has a distinct binding profile for the calprotectin monomers and/or the heterodimeric/tetrameric calprotectin complex (Figure 4).

Figure 4. A schematic representation of calprotectin antibody binding sites. The binding regions of calprotectin antibodies 3403, 3404, 3405, 3406, and 3407 within the calprotectin subunits S100A8 and S100A9. It is to be noted that this representation is purely schematic, as the exact amino acid residues of antibody-binding epitopes are yet to be determined.

Heterodimeric calprotectin complex

Tetrameric calprotectin complex

8. Lehmann et al. The role and utility of faecal

Adv Gastroenterol 2015;(1):23-36.

Biochemistry 1984;137(2):335-343

2001;268:353-363

Sci Rep 2017:13:7(1):17545

markers in inflammatory bowel disease. Therap

nmilä et al. Europium as a label in time

resolved immunofluorometric assays. Analytical

10. Hessian et al. The heterodimeric complex

Antibody recognition, epitope definition and

the implications for structure. Eur J Biochem

11. Oyaert et al. Analytical performance and

diagnostic accuracy of six different faecal

Clin Chem Lab Med 2017; 55(10):1564-1573

in breast cancer cells and breast tumor stroma

is prognostic of poor disease outcome. Breast Cancer Res Treat 2017;166(1):85-94.

13. Jonasson et al. Stress-induced release of the

S100A8/A9 alarmin is elevated in coronary artery

disease patients with impaired cortisol response.

calprotectin assays in inflammatory bowel disease.

12. Miller et al. Elevated S100A8 protein expression

of MRP-8 (S100A8) and MRP-14 (S100A9);

Acknowledgements

We wish to thank our Laboratory Technicians Lea Lipasti and Suvi Suutari for their excellent technical assistance in this study.

9. Hei

References

1. Stríz & Trebichavský, Calprotectin – a pleiotropic molecule in acute and chronic inflammation. Physiol Res 2004;53:245-253

2. Liu et al. Zinc sequestration by the neutrophil protein calprotectin enhances salmonella growth in the inflamed gut. Cell host & microbe 2012;11:227-239.

3. Dorosz et al. Role of calprotectin as a modulator of the il-27-mediated proinflammatory effect on endothelial cells. Mediat inflamm 2015; article id 737310

4. D'Angelo et al. Calprotectin in daily practice: where do we stand in 2017? Digestion 2017;95(4):293-301.

5. Ometto et al. Calprotectin in rheumatic diseases, Exp Biol Med 2017;242(8):859-873.

6. Mariani et al. Serum calprotectin: review of its usefulness and validity in paediatric rheumatic diseases. Clin Exp Rheumatol 2015;33(1):109-14

7. Konikoff & Denson. Role of fecal calprotectin as a biomarker of intestinal inflammation in inflammatory bowel disease. Inflamm Bowel Dis 2006;12:524-534.

Medix Biochemica

Copyright © 12/2022 Medix Biochemica. All rights reserved. Medix Biochemica reserves the right to make changes and improvements to any of the products described in this document without prior notice.

Medix Biochemica Group Klovinpellontie 3, FI-02180 Espoo, Finland medix@medixbiochemica.com · www.medixbiochemica.com

Conclusions

This study demonstrates that the developed calprotectin mAbs have variable specificities towards the calprotectin subunits, \$100A8 and S100A9, and that the choice of mAbs has a significant effect on the assay outcome. The multimerization tendency of S100A8/A9 has been suggested to be a major reason for the observed substantial differences across commercial calprotectin assays¹¹. Depending on the specificity of the mAbs used in each assay, different multimeric forms may be detected from patient samples.

Scientific interest towards the use of calprotectin as a biomarker for subclinical or clinical inflammation has increased substantially during the past years. In addition to IBD and rheumatic diseases, expression of the S100A8/A9 heterodimer has been found elevated in various cancer types¹² and cardiovascular diseases¹³, where it has also been suggested to have potential prognostic value. However, the relative proportions of monomeric, dimeric and tetrameric forms of S100A8/A9 in different diseases, and their correlation with disease status remain to be elucidated.

The highly specific calprotectin mAbs described in this study may be used for the development of new diagnostic assays for various inflammatory diseases. Owing to their well-characterized binding specificities, these calprotectin mAbs have vast potential for utilization across various clinical applications that require accurate distinction between the monomeric and multimeric calprotectin forms.