Improving Point-of-Need Detection with LAMP:

FROM SNP ANALYSIS TO SENSITIVE PATHOGEN DETECTION

Medix Biochemica

Before we get started

Please use the Q&A button at the bottom of your screen to submit any questions.

There will be a Q&A session at the end of this webinar. If we do not have time to answer your questions, we will reach out by email following the webinar.

This webinar is being recorded. The recording as well as ondemand link will be released following the webinar.

Medix Biochemica

Independent, International, and Industry-Leading Raw Materials Supplier

- Provider of high quality antibodies, antigens, proteins, enzymes
- Expertise in immunoassays, clinical chemistry
- Engineered Polymerases for Molecular Diagnostics
 - Unique Polymerases for DNA/RNA
 - ISO:13485 Conformity
 - Assay Development Services
 - Lyophilization Services
 - Lyo-Ready PCR Products

Featured Speakers and Panelists

Dr. Paola Cecere

Postdoctoral Researcher Istituto Italiano Di Tecnologia

Dr. Pier Paolo Pompa

Research Director Istituto Italiano Di Tecnologia

Dr. Giuseppina Sannino

Global Business Development Manager, MDx Medix Biochemica

Medix Bi<mark>o</mark>chemica

Medix Biochemica

Improving Point-of-Need Detection with LAMP: from SNP Analysis to Sensitive Pathogen Detection

Dr. Paola Cecere Postdoctoral Researcher – Istituto Italiano Di Tecnologia

29th October 2024

Dr. Pier Paolo Pompa

Principal Investigator

Nanodiagnostic platform

Integrated, smart, low-cost, and rapid assays/sensors for on field and pointof-care diagnostics.

Specific areas of applications span from clinical diagnostics (cancer, genetic, and infectious diseases) to food safety and traceability, and environmental control (pathogens, pollutants and contaminants).

This research line is based on hybrid detection strategies:

- green and controlled synthesis of nanomaterials
- surface (bio)chemistry
- plasmon non-linear response
- nanozymes
- biotechnology and molecular biology

LAMP-based GENETIC TESTING

© 2000 Oxford University Press

Nucleic Acids Research, 2000, Vol. 28, No. 12 e63

Loop-mediated isothermal amplification of DNA

Tsugunori Notomi^{1,3,*}, Hiroto Okayama², Harumi Masubuchi¹, Toshihiro Yonekawa¹, Keiko Watanabe¹, Nobuyuki Amino³ and Tetsu Hase¹

¹Eiken Chemical Co. Ltd, 1381-3 Shimoishigami, Ohtawara, Tochigi 324-0036, Japan, ²Department of Biochemistry and Molecular Biology, The University of Tokyo, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan and ³Department of Laboratory Medicine, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan

- Outstanding reaction for DNA and RNA amplification, with broad and multifaceted capabilities
- Robustness and accessibility

Mastering design to maximize the elevated LAMP performances

Pirelli's iconic slogan

Our Solution:

it istituto italiano di tecnologia

Medix Biochemica

"Lyo-LAMP"

Unleashing LAMP potential with our expertise!

Today's Topics

	Our ans	swer: "Lyo-LAMP"
Section 2	1.	Lyo-LAMP identity card
	2.	Deep dive into Lyo-LAMP
	3.	Applications and perspectives

The answer is in the name

Exploring the LAMP mechanism – things to keep in mind

B3

B1c BIP

5'

3' B2

BL

Exploring the LAMP mechanism – things to keep in mind

- 1. dynamic equilibrium of the dsDNA target at 60-65 °C
- 2. DNA polymerase with high strand-displacement activity
- 3. two priming sites for each stem-loop structure:

STAGE 1: production of the starting material

STAGE 2: auto-cycling strand-displacement amplification/elongation step

STAGE 1: production of the starting material

STAGE 1: production of the starting material

STAGE 1: production of the starting material

DUMBELL-LIKE STRUCTURE

DUMBELL-LIKE STRUCTURE

artificial ssDNA target

STAGE 2: auto-cycling strand-displacement amplification/elongation step

STAGE 2: auto-cycling strand-displacement amplification/elongation step

3. annealing loop primer/loop

STAGE 2: auto-cycling strand-displacement amplification/elongation step

- Multiple amplification sites
- Loop unfolding-refolding
- Strand-displacement activity

Exponential Auto-cycling Amplification

- Alternatively inverted repetitions of the target _____ Agarose gel
- Cauliflower-like structures

•

Nagamine et al, Molecular and cellular probes, 2002

What are LAMP's strengths?

	PCR the precision powerhouse for lab- based quantification	LAMP the speedy and hassle for on-the-spot diag	e-free tool (nostics		
Temperature	Thermal cycles	Isotherma	ι		
Equipment	Expensive thermal cycler	Minimal instrume	entation	\rightarrow	Cost-effective
Robustness	Sensitive to inhibitor	Highly tolerant to i	nhibitors	\rightarrow	Simplified extraction protocols
Amplification efficiency	10^6	10^9–10^1	0		Greater yield
SPEED SENSITIVITY	LAMP design-depe parameters	ndent		High LAM	-performing P
SPECIFICITY	-			_,	

What are LAMP's strengths?

	PCR the precision powerhouse for lab- based quantification	LAMP the speedy and hassle-free tool for on-the-spot diagnostics		
Temperature	Thermal cycles	Isothermal		
Equipment	Expensive thermal cycler	Minimal instrumentation		Cost-effective
Robustness	Sensitive to inhibitor	Highly tolerant to inhibitors		Simplified extraction protocols
Amplification efficiency	10^6	10^9-10^10		Greater yield
		High-performing LAMP		
SPEED	> 1 hour	7 - 40 mins		Faster time-to-results
SENSITIVITY	10-100 copies/reaction	1-3 copies/reaction	\rightarrow	Greater sensitivity
SPECIFICITY	2 primers x 2 target regions	4-6 primers x 6-8 target regions		Greater specificity

Which challenges do we face with high-performing LAMP?

Overall assay performance:

- sensitivity (false negative %)
- specificity (false positive %)
- reaction rate
- reliability/reproducibility

2. Mix composition

4. Extraction protocol

Detection of challenging DNA markers (as SNPs)

Chemical and thermodynamic requirements

- Specific detection
- Undetectable background
- Avoid non-specific binding and primer dimers

Overall assay performance

- Efficient warm-start polymerase
- Lyo-compatible

3. Risk for carryover contaminations

The assay must include a system against cross-contaminations

Simple, fast and LAMP-compatible

Need for extensive expertise in primer design

A **high-performing LAMP** can be particularly suitable for

Genetic	testing
Point-of-care	High-throughput
Rapid testing at the point of need (centralized or decentralized settings)	Continuous and large-scale screenings
 Fast turnaround time User-friendly Affordability Portability 	 Scalability High sample capacity Automation Reproducibility

Main requirements for POC and HT testing design:

- **Chemistry**: fast and reliable, no cross-contaminations, inhibitor tolerance
- Workflow: short and easy
- **Supply Chain**: low-cost components with high performance, scalability, room storage
- Instrumentation: wide equipment availability, costeffectiveness

Expertise in LAMP technology

Medix Biochemica

Expertise in enzyme engineering and lyophilization

Our Answer: **"Lyo-LAMP"**

High-performing LAMP

in Lyophilized format

for molecular diagnostic solutions

Smart

User-Friendly

Business-Friendly

"Lyo-LAMP" – Identity card

Smart

All-inclusive solutions -

High-performing LAMP —

Lyophilized format

DNA extraction & amplificationCustomized primer set

- High sensitivity and specificity
- Fast results

RT-shipping and storage, with long-term stability

User-Friendly

Highly tolerable test

Easy-to-use

Minimal instrumentation required

Business-Friendly

Cost-effective

Alternative solutions to the limits of traditional methods

Scalable

Custom on-demand

"Lyo-LAMP" is suitable for the detection of different **DNA markers**, such as:

• Species-specific genes

- SNP-genotyping (Single nucleotide polymorphism)
- InDel-genotyping (insertion-deletion)

Targets:

- Human genome
- Farm-animal and pet genome
- Microorganism genome (bacteria, parasites, virus)
- Food

Applications

- Infectious diseases
- Genetic predisposition and susceptibility
- Pharmacogenetics and nutrigenetics
- Food safety and traceability
- Environmental monitoring (water, biosolids, waste-water)
- Bio-terrorism

Deep dive into "Lyo-LAMP" – 3 simple POC-compliant steps

Sampling

Different (target-depending) sample types, non-invasive procedures

Human and veterinarian samples

saliva – buccal/nasal swab - fingerprick

Food and beverages samples

Sampling

Streamlined protocol for DNA extraction

Thermo-chemical (sample-depending) DNA extraction

- Ready-to-use extraction solution with RT storage
- Simple heater required
- A few simple operating steps

No DNA purification!

Total processing time: 5-10 mins!

Deep dive into "Lyo-LAMP" – Customized lyo-bead technology

- Pre-dispensed LAMP mix in freeze-dried spheres (1 bead = 1 reaction)
- Specific customized primer set design

Salmonella enterica

- Ready-to-use
- Customized for our tests (optimized bead composition)
- Long-term stability, room temperature shipping and storage
- Scale-up production

Real-Time SNP and InDel-Genotyping

1

SNPs (single nucleotide polymorphism)

genetic point mutations, that recur with a frequency of at least 1% in a species population

InDels (insertion-deletion polymorphism)

indels can be small, involving just a few base pairs, or larger, spanning several base pairs

Ideal marker

SNPs are involved in development and progression of different diseases, in the genetic susceptibility and predisposition to specific conditions, in pharmacogenetics, in varietal discrimination, etc.

Challenging marker

- Complex and expensive procedures
- High background signal
- High-quality DNA samples

Traditional methods

e.g. microarrays, PCR-RFLP, TaqMan assays, Next-generation sequencing...

Real-Time SNP-Genotyping with "Lyo-LAMP": The Detection Strategy

Real-Time SNP-Genotyping with "Lyo-LAMP": Illustrative Workflow

Real-Time SNP and InDel-Genotyping with "Lyo-LAMP": Test Panel

Target	Marker type	Sample	Application
MCM6 gene	13910 C>T (SNP)	buccal swab	Lactose intolerance
MTHFR gene	677 C>T (SNP)	buccal swab	Hyperhomocysteinemia and folate level
CYP2C19*2	681 G>A (SNP)	buccal swab	Antiplatelet drug (clopidogrel) metabolism
CYP2C19*3	636 G>A (SNP)	buccal swab	Antiplatelet drug (clopidogrel) metabolism
ACEgene	rs4340 in287 (InDel)	buccal swab	Salt sensitivity
MDR1 gene (dog)	nt230 del4 (InDel)	buccal swab	P-gp dependent drugs toxicity

Genetic Predisposition to Lactose Intolerance

Opportunity for customizable targets!

2

Food Fraud and Traceability

Food Fraud and Traceability with "Lyo-LAMP": Test Panel

Target	DNA marker	Matrix	Sensitivity	Application
Triticum aestivum (common wheat) vs Triricum durum (durum wheat)	species-specific gene	wheat	0.3% adulteration	species discrimination
Durum wheat «aureo» variety vs durum wheat «non aureo» varieties	SNP on Chr7A	wheat	10% adulteration	varietal discrimination

Varietal Discrimination

Routine Quality Controls

3 Microorganism Detection

Microorganism detection with "Lyo-LAMP": Test Panel

Target	Matrix/sample	Application
Escherichia coli	tap water milk	water contamination bovine mastitis
Legionella pneumophila	tap water	water contamination
Aeromonas hydrophila	tap water	water contamination
Salmonella enterica	biosolids	biosolids contamination
Enterococcus faecium	tap/waste water	water contamination
Pseudomonas aeruginosa	milk	bovine mastitis
Streptococcus pneumoniae	nasal swab	sinusitis
Staphylococcus aureus (MRSA vs. MSSA)	nasal swab	sinusitis
Clostridium tyrobutyricum (spores)	milk	cheese spoilage
Mycobacterium tuberculosis	saliva	tuberculosis
Plasmodium spp.	finger prick	malaria

Reaction time: 10-20 mins Sensitivity: 2-10 copies/reaction

Opportunity for customizable targets!

Conclusions

Lyo-LAMP

High-performing LAMP in Lyophilized format

С	SAMPLE matrix and volume
u	
S	Technology FLEXIBILITY
t O	 Challenging targets (SNP) Ultrasensitivity detection (e.g., microorganisms)
m	
i	Application VERSATILITY
i z	Application VERSATILITY Infectious diseases
i z a	Application VERSATILITY Infectious diseases Genetic predisposition and susceptibility
i z a b	 Application VERSATILITY Infectious diseases Genetic predisposition and susceptibility Pharmacogenetics and nutrigenetics Food safety and traceability

If you are interested in collaborating, we would be excited to hear from you!

Amplify Diagnostics With Lyo-LAMP, your partner in Point-of-Care Excellence!

Dr. Paola Cecere Postdoctoral Researcher – Istituto Italiano Di Tecnologia

Dr. Pier Paolo Pompa

Research Director – Istituto Italiano Di Tecnologia

Dr. Giuseppina Sannino Global Business Development Manager – Medix Biochemica

Thank You – Any Questions?

Thank you

Medix Biochemica

Did you enjoy the webinar?

Share your feedback:

Subscribe to stay informed on all Medix Biochemica webinars:

Medix Biochemica